The Research Engineer

Published by the Georgia Tech Engineering Experiment Station

DR. JAMES E. BOYD - see pages 3 and 16

Industrial Products Series
THE MAN who more than any other has been responsible for the amazing success of the Georgia Tech Engineering Experiment Station is leaving the campus to return to the scene of his first academic position. Dr. James E. Boyd-teacher, researcher, and administrator -will become president of West Georgia College this fall. He first worked at West Georgia College from 19331935 as head of the Mathematics and Science Dept.
 sistant professor of physics. He has served Tech as associate professor and professor of physics; and as a research
 assistant director, the associate director, and since 1957, the director of the Engineering Experiment Station. Excluding three years of service in World War II as a naval officer, Jim Boyd has served Georgia Tech for 26 years. Too often, people tend to measure a man's worth to a research program by following the dollar volume chart. If this were our only measure, then Jim Boyd was a most successful man, for in four years under his direction the dollar volume of the station's research went from less

 possible contribution to the academic program at Georgia Tech. He was one of the main reasons that the station was able to attract more than its share of outstanding
 to Georgia Tech from all over the country simply because they wanted to work under Jim Boyd.
I know that he will make a great president for West Georgia College, because he has all of the traits that go to make a top college administrator, but we at Georgia Tech feel a great sense of loss at his leaving us.

President

The President's Page

VOLUME 16, NO. 3

Published five times a year by the Engineering Experiment Station Georgia Institute of Technology, Atlanta, Georgia

ameter tubes and flasks, and an annealing oven to remove strains induced in the
glass by bending and sealing. The lampworker's tools are simple and crude. His reamers and shapers are made of carbon or wax-coated brass with insulated handles. And, he has his stock
of glass tubes and rods of all sizes, deof glass tubes and rods of all sizes, deAll the intricate, complicated glass forms All the intricate, complicated glass forms
seen in a laboratory are created from seen in a laboratory are created from
these basic components. The glass most used today in research
industry is a borosilicate glass trade industry is a borosilicate glass trade-
 sistant properties. It is transparent but

WITH ONLY A SLIGHT PUFF, A BUB-
BLEASTHIN AS PAPER CAN BE BLOWN.
 il lamp. resulting flame wall articles

 nique were called lampworkers. Their torch was the oil lamp. Their factories vere known as lampshops.
Today, the glass blower Today, the glass blowers who form
scientific apparatus from glass tubing of all sizes and use a gas torch to melt the glass are still rather archaically re-
ferred to as lampworkers. T here are many questions one might 1 ask about these men; for example, how many are there in the U.S. today? What does a modern day lampshop look
 with and just how is a complicated
piece of apparatus fabricated? piece of apparatus fabricated? As the field of research becomes larger professional glass blower are almost indispensable. Approximately 1000 lampworkers in the United States and Canada are primarily located in industrial re-
 sities. In the Southeast, 30 lampworkers
are located in such research institutions 'queId rasiy чeuuenes 'oธ̃p!y yeo se
 ties as Duke, North Carolina, Florida, Georgia and Georgia Tech.
 skill by simply teaching themselves by trial and error, a majority of them are taught as apprentices and spend a period puzшәр ач for lampworkers has become so great that a trade school in New Jersey has
created a 15 month course for basic

 and glass-to-metal joints. and glass-to-metal joints. desk with a gas-oxygen torch, a glass saw, a glass blowing lathe for large di-
waste kitchen fats with caustic obtained by leaching wood ashes with rain water. The resultant liquid, largely potassium stearate, was converted into a solid soap
(sodium stearate) by the addition of salt (sodium stearate) by the addition of salt
(sodium chloride). The solid soap was easily pressed into bar form although no more efficient than the liquid soap. "Soap" is a generic term, as there are many different soaps with diverse characteristics. Any vegetable or animal fat
or oil, reacted with caustic, produces a or oil, reacted with caustic, produces a
soap. Figure 1 shows the typical reaction which takes place in the production of a soap from a fat. The most common soaps used for household cleansing are made from waste kitchen, market, and slaughterhouse fats and consist largely
of sodium stearate, the most effective of sodium stearate, the most effective
dirt mover among soaps. "Castile" soap is traditionally prepared from olive oil and consists largely of sodium oleate and linoleate. Much of the "Castile" soap is now prepared from cottonseed
oil, which is high in oleate and linoleate content. The soap most desired for shampoo preparations is coconut oil soap, largely sodium laurate. The laurate is unique in restoring lustre and "manage-

The backyard method of preparing soap provides little flexibility in the mata particular job. The selection of a particular oil and a caustic, potassium hydroxide for liquid soaps and sodium hydroxide for solid soaps, about sums up
the posssibilities. During the past two decades there has been an extensive shift
 to the number of soaps which can be
produced. The Twitchell process, patproduced. The Twitchell process, pat-
ented in 1890 , provides a means of sepented in 1890 , provides a means of sep-
arating the fatty acids from the fat molecule. These fatty acids can then be sep-
 pure form by fractional crystallization

 Ч๖! ! s!ч pue paz!!!̣n are squịd suons s!̣

 the development of a "team" in which

 јо Кив
 hibit a wide diversity of properties and
 molecules of very limited applicability. punoj әq квu sasn paseəлаи! 'дәләмон as our technology expands.

Among the most versatile and most numerous molecules on the chemical market today are the "surface active agents" or "surfactants." These are en-
countered most frequently in the form of synthetic detergents, or "syndets"; shampoos and other toiletries; household,

 maximum efficiency out of detergents, and there is hardly a better field in
which to illustrate the teamwork of which to illustrate the teamwork of
molecules.

The earliest commercial surfactants were soaps. The manufacture of soap literally grew out of the backyard. In
earlier days soap was made by boiling

The gas-oxygen torch heats the glass to over $2500^{\circ} \mathrm{F}$. and enables the lampworker to form the tubing into almost any shape. Here Mr. Lillie is sealing one tube inside the other. does not have the brilliance or clarity get a tube that was forgotten or a tool
of lead crystal. It contains approximately that is not readily available. The glass that is not readily available. The glass is heated by uniform rotation in a flame of natural gas and oxygen. By varying the proportion of oxygen, a whole range
of flame sizes and temperatures can be obtained. Once the glass is molten, it can be pulled, pushed, blown or pressed. By careful manipulation and application
of years of experience, the skilled lampworker can transform the scientist's dream into a useful reality. 82% silica, 13% boron and small percentages of soda and alumina. The softening point is $2228^{\circ} \mathrm{F}$. The annealing

B efore a lampworker starts a piece of B apparatus, he must carefully study the drawing or sketch and mentally pro-
ceed step by step with each phase of fabrication, because once the piece is started
of obtaining pure fatty acids as "blends" are frequently preferable acids as "blends" terials. The number of "blends" pure ma(or caustics) withe number of alkalie
 be reacted is also greatly increased as
 rather than saponification whid and base,
 be produced with ammonia, soaps may nolamines such as triethanolamine, morpholine, and other organic bases, morT he number of possible soaps creased to industry has been further inwhich do not production of fatty acids vegetable fats. The Fischatural animal or ess involves the oxidation Gatsch procparaffins to fatty acids and of petroleum 18 to maker with molecules having the
 prl!u! sp!ox u!equos slef pup suos of highly specialized applicat atoms. Some for the higher molecular weighe found Even before these developmht soaps. soap-making process, soap was the the These developments on the market usefulness in many have increased its soap also has many respects. However, ple, its somewhat weak points: for examcost, and its incompher than average water. Ions present in itibility with hard
 cipitate which manifests itself as "tattle-
tale gray" in the tale gray" in the laundry, ring-around-
the-tub in the bath, the-tub in the bath, etc. To overcome early learned to add soap manufacturers the soap, thus to add other materials to greater capabilities thang a team with gredient. Among the first materiangle inwere sodium metasilicate, sodium carphosphate. Thsh), borax, and trisodium and possess a certe all mild alkalies gent action within themount of deter-
tion, sodium carbonate and In addi-

- and trisodium
Figure 1 A
Three soap molecules formed from one fat
molecule. The sodium from the sodium
hydroxide has joined with the fatty acid
radical to form each molecule of soap. A
bi-product of this reaction is the one mole-
cule of glycerine, $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}$ in center.

Figure 1 B

Figure 1B

Molecule of a common fat, consisting of to a central glycerine acid radicals joined chains consist of seventeen each with two hyd react with the fat moleculoms. Waiting to cules of sodium hydroxide are three molegen). each of sodium, oxygen and (one molecule where sephow the place in each lace when a reaction occurs producing takes

 a product which they consider more convenient to use.

The potassium compounds are almost 1 completely soluble, although a little residue might form on the bottom of the
container or otherwise cloud the solution a bit. So what does the manufacturer do about this? He adds a bit of
 or magnesium chloride would do as well) to form a precipitate just like that formed when soap is used with hard 'әұрч! instead of settling out, forms in very a "pearlescent" effect, which not only masks the cloudiness of the builders, but adds beauty to the product.
 in our backyard soap-making. Back with the fatty acids and their soaps we gave up for synthetic detergents. Even back different form. To complete a full cycle, it might be added that soap may be used

 way around?
builders must be added to cone new additives have recently found their way into the detergent market and are now standard ingredients of the detergent
stock in trade. A good detergent for use in the home washing machine will generally contain the following materialsan alkyl aryl sulfonate of medium low dient, 60% sodium sulfate left over from the neutralization reaction), 30%; sodium metasilicate, 10%; sodium tripolyphosphate and/or tetrasodium pyrophosphate, 35%; sodium sulfate as "filler,"

 boxymethylcellulose helps prevent the
 vents deposition of compounds of iron, manganese, etc., which darken cloth. The optical brighteners are compounds with
dyelike structure, which absorb ultra.
 is. The surfactant is only about 40%
of 30% or about 12% of the total

 is well under 1%. Furthermore, there is

 $W_{\text {Wen the in den-ronic surfactants of this kind, the }}^{\text {hen }}$ builders and fillers take on a new duty in addition to the one they already have.
The non-ionics are liquids, rather than solids. Since so little is required in the "built" product, however, this amount
 ingredients, which are all dry powders,
The dry powders then serve as "carriers" for the liquid surfactant. Non-ionic surfactants have more easily controlled foam

Reveral clever techniques are found in N the adhesive bonding of glass laminates. For the bonding of glass or iron it was necessary to develop a glass with a
thermal coefficient of expansion resemthermal coefficient of expansion resem-
bling that of iron. Such a glass could be bonded to iron with only conventional metal solders. The tendency of lead from leaded glass to migrate into iron on heating and to weaken the joint was over-
 glass before soldering. Zirconium or ti-
 glass laminates (safety glass) were made with mitrocellulose films bonded to glass with gelatin. Later research led to polyacrylic esters as layers, and then to polyvinyl acetal films which bond to glass without additional adhesive. Glass fibers, whose bond to laminating resins is poor have been made usable by treatment with allyl or vinyl silanes. The silane portions of the molecules "react with the
 and the vinyl or allyl tails of the molecules are later included in the polymeri-
zation of a thermoset adhesive. XHdVYDOITGIG

 land). Society of Chemical Industry, London and John Wiley and Sons,
Inc., New York 1954. Inc., New York 1954.

Reinhart, Frank W., "Survey of Ad-
hesion and Types of Bonds Involved" (same) p. 9

 selected principally for low cost and

 rapidly under very little heat and pres-
sure and that the adhesive not liberate
 bonded stock. A typical corrugated board operation using high speed roller adhesive applicators may produce several完 inating flat sheets together at high speed under roller pressure. Tubular cartons
 For bookbinding, the old animal glues
which required drying have largely been replaced by thermoplastics. For closing
 may be activated by water or pressure
sensitive tapes which adhere to almost sensitive tapes which adhere to almost
anything except the paper or cloth roll
which bears the adhesive. should be inexpensive, fast curing, and free from tendencies to form pockets during heat curing. Phenolics are generally
used in exterior and marine plywoods. Less costly glues are permissible for interior use. Laminated woods may be used for tennis racket frames, bridge girders, turning blocks and furniture lets, and architec-
tural shapes such as arches and beams.
 bers from thin strips and discarding defective wood is readily apparent. In coman electrically conductive thermosetting

 available for nearly any technique the user may desire.

Since the coefficients of thermal ex-
ansion of dissimilar metals create strains
 metal bonding are usually formulated to provide elastic bonds. This elasticity is
tion of new primary chemical bonds
whether initiated by chemical catalysts, whether initiated by chemical catalysts, heat, or pressure. Since enough heat to
break these bonds is sufficient to destroy other bonds in the molecule, a thermosetting glue will usually char rather than soften when heated. An interesting in moulding plywood. The laminate stock is prepared at a moderate temperature just high enough to cause the glue to flow. For final fabrication the stock is
pressed into the desired form at higher temperatures activating reactive sites in the glue molecules. The new primary bonds form a crosslinked thermoset ad-
hesive which folds the object in the hesive which folds the object in the
desired shape. $\mathbf{B}^{\text {lomquist has suggested that classifi- }}$ Beation of adhesives according to comnaturally occurring materials and synthetic materials. The first group might be divided into starches, dextrins and
a sub-group of proteins. The proteins would include animal bones and hide, albumin or whole blood protein casein, and soybean protein. A third subgroup of naturally occurring materials includes
asphalt, shellac, natural rubber, and sodium silicate. The second major group, synthetic adhesives includes a subgroup of thermoplastic materials such as cellulose esters, alkyd and acrylic esters,
polyamides, polystyrene, synthetic rub-
 synthetic or thermosetting subgroup ind
0
0
0
0
0
0 resins. The choice of adhesives for each
 ties of the adhesive, bond strength re-
quired, and cost

 melted, applied, and cooled. The second method is to dissolve a solid material in a volatile solvent. A solid material may be liquefied by pressure and solidified when the pressure is removed. The low
fourth method is to apply a liquid, low molecular-weight material and form the
 In order to bring the molecules of the
adhesive and its substrate within the limited range of attractive molecular forces, the adhesive is usually in a liquid state during some part of the bonding operation. Since hardening of the adhesive,
be it by solvent evaporation, hydration, cooling, polymerization, or any other chemical or physical process, usually results in shrinking of the glue, residual
strains are left in the bonded joints. To minimize these strains, it is desirable that most of these processes take place before the adhesive hardens.

Where the material to be bonded is thin or elastic, deformation of the slab-
strate may reduce the strains. This flexibility of the adherend permits the use of rigid adhesives in the assembly of
cardboard cartons. Where wrinkling of the glued surface is objectionable, e.g., in mounting photographs on paper, a The terms thermoplastic and thermosetting are related to whether an adhethe dhesives, even though they may be tic adhesives, even though they may be
hard at ordinary temperature, are held together by Van der Waals dispersion forces which may be overcome by thermal energy as heat is applied. A thermo-
setting resin hardens through the forma-

THE EXTRACTION OF OIL IN A COUNTER-FLOW COLUMN IS SHOWN ABOVE.
of oily feel in cosmetics, increased fluidity of liquefiable waxes and resins, food preparations such as butter, margarine,
mayonnaise and sauces are some more applications.

Presently the Georgia Tech Engineerng Experiment Station is continuing development work on a process for extracting oil from oth seeds. A patent assigned to the Station. The unique aspect of the process is in the separation of the oil from the remainder of the oil
 the stability of the emulsion is
 separated by centrifugally breaking the unstable emulsion.

\lceil added, with agitation, to an oil in water emulsion prepared with a sodium soap, the emulsion will break when sufficient calcium chloride has been added to give equivalent quantities of sodium and calcium soaps. It becomes a water in oil完
Common applications of the use of emulsions in industry include dilution tural sprays, adhesives, latex paints, codiver oil and drugs. Cleaning metal surfaces by emulsifying oily soils, removal
Scherch Associate uniformly through the emulsion when dusted on the surface. A dye with the everse solubility conditions will remain as discrete specks on the surface when dusted on an emulsion.

The action of emulsifying agents is illustrated with two common typesquirement is that the agent will concen-
 components of the emulsion. The second requirement is agitation to disperse the
 A solid powder serves as an emulsi-
 the other. The liquid which better wets
 the emulsion. Thus, carbon black will form an emulsion of water in benzene
and other organic liquids while oil in
 means of basic salts, clay, calcium car-
 the interface and the solid powder partion will take place. The solid goes en-
 exhibits no preference. Intermediate angles of contact are required for emulsion
formation.

Soaps are widely used as emulsifying agents. Their action is due to the relative change in the surface tension at the oil-emulsifier. If the surface tension at the interface water-emulsifier is less than at the interface oil-emulsifier, the film will tend to bend so as to become convex on the water side, thereby tending to
make an emulsion of oil in water. On the other hand, if the surface tension at the interface water-emulsifier is greater

Edited in Retrospect

For over six years, the man who appears on this issue's cover has been our friend. As a Tech alumnus, as an employee of the Institute, and as an editor, we would like to take up these few lines to say just how much this man's presence on the campus has meant to the growth of Georgia Tech and to our own relatively unimportant career growth. We are positive that if he saw this copy prior to its publication, he would immediately forbid it ever appearing in print. Therefore, we are just bypassing him for the first time in our term as editor of this magazine.

Among the truly great men we have been privileged to know in our lifetime (and they have been surprisingly few) Dr. James E. Boyd would have to appear at the top of our list. He is the most dedicated man we have ever known and only those who have worked closely with him know how strong this dedication really is. But dedication without talent, without vision, without gentility, and without a true respect for your fellow men is a hollow and often destructive thing.
Jim Boyd has talent, a great deal of it. He has even more vision. He has the quiet, worried ways of the gentle man. And, a great number of people on this campus and in the world of education and research know how he feels and acts towards his employees, his employers, and his fellow scientists and friends.

To this one man at least, he is the absolute model of what the scientist of today and of the future must be if this country and the world is to live with its own technology.

His interest in the careers of the people who work for him is something else you must be a part of to believe. His knack of quietly guiding you toward the correct decision, no matter how small the problem, is just another indication of his desire to better the people who work for him and in turn better Georgia Tech.

He has for a long time been the symbol of Georgia Tech research to a lot of people. He has seen it grow from a small $\$ 40,000$ effort to a $\$ 4,000,000$ giant that has outgrown its physical facilities to the point of absurdity. He has given all of us who have known him a great deal. And, we all wish him well.

