DECEMBER, 1959
Published by the Georgia Tech Engineering Experiment Słation \qquad FIREFLIES IN SPACE

Hat might be Considered the growing impatience
of the Twentieth Century is having its impact on graduate education. Some years ago, at least before World War II, the time lapse between a scientific discovery and its engineering application was not a matter of widespread concern. But, for a number of good reasons, it is now.

One of the natural results of this pressure to move more swiftly from experiment to production is that engineers are becoming more involved in research. The knowledge and methods of ten or even five years ago are often proving inadequate to cope with today's prodigious advances in research and development. Increasing demand is being placed on engineers to witness, interpret, and make use of discoveries in science as they occur.

The engineers most likely to meet this impatient demand are those who, through advanced study and research, have established and maintained rapport with
 achievement now, and it is becoming tougher. Probably
 program of formal graduate study and research.
"Graduate study," however, must not be a static concept either. At Georgia Tech and a number of other institutions, graduate study is reinforced by strong research

 instruction and the value of the problems selected for

 Нечм моиу очм иәш әonpoid of әпи!̣шог IL! research is and who can put this knowledge to effective use.

VOLUME 14, NO. 5

 Published five times a year by the Engineering Experiment StationGeorgia Institute of Technology, Atlanta, Georgia
James E. Boyd, Director
Harry L. Baker, Jr., Assistant Director
Arthur L. Bennett, Chief, Physical Sciences Division
Maurice W. Long, Chief, Electronics Division Published five times a year by the Engineering Experiment Station
Georgia Institute of Technology, Atlanta, Georgia
James E. Boyd, Director
Harry L. Baker, Jr., Assistant Director
Arthur L. Bennett, Chief, Physical Sciences Division
Maurice W. Long, Chief, Electronics Division Published five times a year by the Engineering Experiment Station
Georgia Institute of Technology, Atlanta, Georgia
James E. Boyd, Director
Harry L. Baker, Jr., Assistant Director
Arthur L. Bennett, Chief, Physical Sciences Division
Maurice W. Long, Chief, Electronics Division Published five times a year by the Engineering Experiment Station
Georgia Institute of Technology, Atlanta, Georgia
James E. Boyd, Director
Harry L. Baker, Jr., Assistant Director
Arthur L. Bennett, Chief, Physical Sciences Division
Maurice W. Long, Chief, Electronics Division Published five times a year by the Engineering Experiment Station
Georgia Institute of Technology, Atlanta, Georgia
James E. Boyd, Director
Harry L. Baker, Jr., Assistant Director
Arthur L. Bennett, Chief, Physical Sciences Division
Maurice W. Long, Chief, Electronics Division Maurice W. Long, Chief, Electronics Division
Wyatt C. Whitley, Chief, Chemical Sciences Division Frederick Bellinger, Chief, Materials Sciences Divisió Thomas W. Jackson, Chief, Mechanical Sciences Division William F. Atchison, Head, Rich Electronic Computer
William F. Atchison, Head, Rich Electronic Computer Center Robert B. Wallace, Jr., Editor Cecil Phillips, Associate Editor
Clair Gosssett, Mary J. Reynolds, Editorial Assistants THE PRESIDENT'S PAGE 3
PROJECT FIREFLY 4
COLLUSION ON COLLISIONS
 THE PRESIDENT'S PAGE 3
PROJECT FIREFLY 4
COLLUSION ON COLLISIONS minerals advisory committee tV'S tiniest show. NEW DIVISION, NEW CHIEF INDEX TO 1958-1959 ISSUES EDITED IN RETROSPECT from which the Bravo burst appeared to occur just between the Moon and Vrom which the Bravo burst appeared to occur just between the Moon and
made for the cloud). Immeditely winds up to 300 mph began to carry away and disperse the cloud. The photo was made by a K-24 camera about five minutes after burst and shows the effects of the winds on the cloud, which had appeared almost spherical at burst. The color added to the photo is an
approximation to the visible pink caused by Bravo's sodium-cesium mixture. Tech's principal Firefly investigator, Dr. Howard Edwards, explains the purpose of this research in the article beginning on page 4.
THE RESEARCH ENGINEER is published five times a year in February, April,
June, October and December by the Engineering Experiment Station, Georgia June, October and December by the Engineering Experiment Station, Georgial
Institute of Technology. Second-class postage paid at Atlanta, Georgia.

$\stackrel{\rightharpoonup}{\text { 릎 }}$
 Iכヨ「Oヌd

by Howard D．Edwards，
 \section*{Research Associate Professor of Physics}

 latter method of scientific exploration． The rocket nose cone or payload is made up of a steel cylinder containing several chemicals and a simple timer to close a circuit from a battery．The complicated and expensive equipment is installed at ground stations and hence is not dam－ aged or destroyed during the rocket flight． Scientists have known for a long time that some atoms have the ability to ab－sorb radiation and then re－radiate the sorb radiation and then re－radiate the
same frequency that has been absorbed． This phenomenon，called resonance radi－ ation，has served as the primary observ－ ing technique for the optical measure－ วuо КуәI！

 The sodium atom has two strong emis－
sion lines at wavelengths of 5890 A and 5896 A（angstroms）which are capable of a very intense resonance reaction． Hence，it is perhaps natural that sodium was the initial chemical chosen for upper atmosphere contamination experiments． The first successful experiment was con－
ducted in 1955．Since that time sodium ducted in 1955 ．Since that time sodium
has been used extensively by U．S．sci－ entists in their upper atmosphere re－ search programs and by the Russians on some of their moon and space shots．
 producing resonance radiation．Some of these are potassium，cesium，calcium，
In the 1959 Firefly series the rockets

－ature has a habit of making it dif－
 innermost secrets．The upper reaches of
our atmosphere are no exception and
 in 1946 and satellites in 1958，the un－ knowns far exceed the knowns in this
Since February， 1959 Georgia Tech
 large Air Force sponsored project，Proj－
ect Firefly，in an attempt to gain more
 pue OS）siə 80 miles）．Heights up to 130 km may

 can get a money－back guarantee on their round trip tickets．
In conducting upper atmosphere ex－ eriments there are at least two major uses of the rockets and missiles．These
（1）The missile is used as a flying aboratory and carries all or most of the cientific apparatus．Results are then ither telemetered to ground receiving tations or recorded on film or tape for litimate nose cone recovery a flying probe with a minimum of instrumenta－ tion on board and with a majority of he scientific equipment set up at ground eceiving stations
Project Firefly
Project Firefly is an example of the

$\begin{array}{ll}\text { At } 2 \text { a.m. Marshall Cooksey (Ga. Tech, Dr. } & \text { (Camera Service Co., Atlanta) ready equip- } \\ \text { Bob Huffman (AFCRC) and Charles Smith } & \text { ment during experiments at Eglin AFB. }\end{array}$ explore the region between 85 and 130 km , there was no need for a larger and Since all of the launches are similar the Aerobee flight of May 22 will be
 (MST) on May 22 and carried a pay-
load of 85 lbs of cesium nitrate and 3 bs of sodium nitrate. Local sunrise on May 22 was $04: 57$ and the first signs of

 for photographing the cloud.

At $4: 17: 10$ the payload was vaporized into the air and immediately a bluish-
pink cloud appeared in the sky. The cloud continued to grow and expand for 30 minutes before it was dissipated to
such an extent that it was no longer visible.

The cloud was photographed from four observing stations by multiple camera accompanying illustrations. The stations were located at distances up to 135 km
from the launch site.
 Since these atoms were vaporized in a
fully sunlit region of the sky, the sun-
light to irradiate the atom cloud and at seiluos unuixew əals of әس! әues әप or the ground observing stations which oupeipei әul पdeıôoloud of pe pnop วul ธัu!peuiunlil of uoḷ!ppe uI
 the sunlight is sufficiently powerful to

 to sunlight, the cesium gave an ionized cloud which could be tracked by radar and other radio frequency equipment. been fired in support of the Firefly proj-

 Force Base on May 12 and May 22 . The
other 13 launches were made from Eglin
 October, in which the rocket was a twostage vehicle with the Nike as first stage and Cajun as second stage.
The Aerobee rocket was

The Aerobee rocket was capable of
carrying a $200-1$. payload to heights well
 on the first two firings. The Nike-Cajun system, being smaller than the Aerobee, could carry only a $50-\mathrm{lb}$. payload to the same 130 km height. However, since the
objectives of the experiments were to
ure in this region is known.
The early rockets also contained equipment to measure pressure, density, composition, meteoric content, solar radiation, airglow radiation, magnetic field
and other effects. Present day rockets and other effects. Present day rockets
and satellites are still being instrumented with equipment to measure these same quantities since the available information is still not sufficient to give a coherent picture of the upper atmosphere.
Satellites have done much to add to
our knowledge of the upper our knowledge of the upper atmosphere.
However, they cannot give all the anHowever, they cannot give all the an-
swers for a number of reasons, including their high cost and inability to orbit in the atmosphere below about 160 km . Due to the cost and complexity of
rocket launches, the majority of the upper atmosphere data have come from a few locations where suitable launching facilities have been established. Excluding the Soviet Union, for which information is lacking, the majority of the studies have been made from Holloman Air Force
 Mexico; U. S. Air Force Missile Test
Center, Florida; Ft. Churchill, Canada; Wallops Island, Virginia, and more recently Eglin Air Force Base, Florida and
Vandenberg Air Force Base, California Vandenberg Air Force Base, California.
British and French workers have also conducted some research from bases in North Africa and Australia but these efforts have been on a very modest scale compared to U. S. efforts.
Upper atmosphere and near space research is still virgin territory. Many more
 belts are undoubtedly available to the en-
terprising scientist. terprising scientist

BACKGROUND

Scientists and engineers have long tion of our atmosphere which is above
 the reach of balloons. This region is commonly called the upper atmosphere. The
first textbook of the upper atmosphere was written in 1935 by an Indian scientist, S. K. Mitra.
In spite of the
 on the upper atmosphere, the first manregion was the WAC Corporal rocket, aunched in 1945. In 1946 upper atmosphere research got underway in a modest

 plains Dr. Edwards, "but it was only re-

Although hundreds of rockets containng a wide assortment of observing equip-
 cratched in our attempt to understand
 eet. For example, the temperature, one
of the first things to be measured, is still
 tion of Mitra's book gave the tempera-
ture at 400 km as $3450^{\circ} \mathrm{K}$. The 1956 ture at 400 km as $3450^{\circ} \mathrm{K}$. The 1956
edition of the ARDC Model Atmosphere listed $1169^{\circ} \mathbf{K}$, and estimates from the first satellite observations gave $1400^{\circ} \mathrm{K}$ or the same 400 km altitude. Clearly it
is too early to conclude that the temperais too early to conclude that the tempera-

[^0]

Studies of this rapid growth will bemade to better determine diffusion co-
efficients in the upper atmosphere.

Similar results have been obtained from the other 14 rocket launches and the data are in the process of being

By the proper choice of chemicals, the artificial contamination technique can lead to a better understanding of other parameters which have not appeared in the above cesium-sodium type experihave indicated that CCl_{4} vaporized into the upper atmosphere will react exclu-

Minerals Advisory Committee

ment of new industry in the State based on aluminum, beryl, and heavy minerals including titanium and zircon; (e) the product studies of the Industrial Development Branch of Tech, including the cement, glass, tile, and whiteware reports. Georgia Tech's Minerals Development
Program was one of the subjects discussed at the July 17 meeting. Tech's plans include: (a) completion of a Georgia minerals index, cross-referenced by mineral, county, and author (based on a bibliography by Drs. J. G. Lester and A. T. Allen of Emory); (b) increased effort on (c) studies of the feasibility of produc-
 cent sillimanite by an inexpensive slipcasting technique; (d) continuation of a magnetic survey of Georgia (of particu-
lar interest to the petroleum industry); lar interest to the petroleum industry);
and (e) installation of bench and pilot scale equipment for mineral beneficia-

 should continue to concentrate on such
 electron bombardment. Georgia Tech's work
eastern River Basin Study Committee was also described.

In the most recent meeting of the committee on October 2 potentials for abrasives were discussed. A report was received on a preliminary reconnaisance survey for limestone in twelve counties
in southwestern Georgia. The most notable areas of "fresh" limestone were found in Baker, Calhoun, Decatur, Early, Miller, and Randolph counties. Abrasive
such as silicon carbide were discussed. studies concern advanced techniques of
 the ionosphere's effects on radio signals,
and mutual interference of communica tion equipments. Current programs in radar are directed toward finding new means for attaining improved radar performance, particularly greater range and angular resolution.
The Physical Sciences Division, under Dr.
tinue to direct the expanding research tinue to direct the expanding research
activities of the Physics Branch, the De-
 culator. The Analysis Branch has been re-

 MacKay was named Head, Statistical
Analysis Group, in July.

- the masthead of this issue of the
 for the first time. Officially effective No-
vember 1, 1959, Maurice W. Long is Chief, Electronics Division.
But to those familiar w ctivities at Georgia Tech the name is ot new and the establishment of the ew division is not surprising. Maurice
ong holds three degrees from Georgia Long holds three degrees from Georgia
Tech, the latest being his doctorate. He
 research program almost since its begin-
 argely responsible for the rapid growth
of the Radar Branch in recent years. fte Radar Branch in recent years.
The Electronics Division is a log outgrowth of the Physical Sciences Divi-
 vice the size of the next largest division f the Station. The Radar Branch of the hysical Sciences Division had also be-
ome the largest research group at Geora Tech. The new division consists of e Radar Branch (with Dr. Long reons Branch (with William B. Wrigley Head).

Georgia Tech's first studies in radar gan around 1948. The studies grew pidly into a major program as the opment contracts and the Board of

In 1955 the Radar Branch was created
dong was appointed Head Under leadership the Branch expanded to present size, and during the same pedong worked toward his Ph.D. in ysics. He obtained the degree in June
this year. The Station's Director, Dr mes Boyd, states that in the process of larging Tech's program, Long became

Show
 7S0!u! $\mathbf{~ S , A 1}$

by L. W. Ross
Assistant Research Engineer tures. The TV system allows the entire
class to view the same phenomenon under one microscope. The large (21 -inch) enlarged compared to the normal view through the microscope. Dr. Fetner thus able to point out minute changes impossible to show otherwise. (The low light intensities required to illuminate the specimen for the TV camera allow livin
systems to be observed undisturbed.) "I foresee routine use of television undergraduate biology courses," the lab periods and graduate courses He emphasized that the equipment compared to the cost of multiple ro search microscopes in the laboratories of television as radiation studies expanc Georgia Tech's research reactor faciity diate opportunities for closed-circuit ted
vision in research.

 proving to be a valuable aid in research and laboratory instruction in radiation biology.
Dr. Robert H. Fetner, Associate Pro-
fessor of Applied Biology enhances the capabilities of Tech's Radiation Biology Laboratory with a closed-circuit system consisting of a standard portable TV camera and a conventional table model TV receiver.
Dr. Fetner is currently studying cellular changes of microorganisms exposed
to ionizing radiation. A television camera attached to the eyepiece of a microscope is placed in the shielded room of the Radioisotopes and Bioengineering
Laboratory. Here the specimen is irradiated by high intensity x -rays. Safely seated in another room students and researchers may observe the changes in the
Television also aids in classroom lec-

Sicilio, Fred
Special design of new laboratory, F Sound, fluid Sound, fluid flow and heat transfer, Ju
'59, 4
Spillways for Iran, Ap '59, 4
Sound fluid flow and heat transfer, Ju Spillways for Iran, Ap '59, 4
Spurlock, Jack M.
, Sound, fluid flow and heat transfer,
T Ju '59, 4

Industrial uses of fused silica, D '58, 19

Atomic energy-promise for the fu-
Georgia Tech's nuclear program, Ja ' 58,12
GNAC

Neutrons, gamma rays and you, Ja
'58, 14
Radioisotopes report, Ja '58, 10
Research Reactor and lech, Ja 58,6
Special design of new laboratory, F
Special design of new laboratory, F
, 5911
The intrepid isotopes, report on symposium on industrial uses of radio-
isotopes, Ju '59, 10
' 58,4
ysical Sciences Division
Special research report, $\mathrm{O} \quad{ }^{\prime} 58,15$;
O '59, 17
man, W. M.
Ideas into f
, Ideas into fabrics, Ju '58, 12
ulos, Nick
, Ceramic nose cones, D '58, 10
Clay mineral research, D ' 58 ,
ychology program, the new, Ap 59, 12
—. Rich electronic computer center logs
variety of project experience, F' 59,7
Mason, C. R.
, High temperature research, D '58, 6
Material Sciences Division
Special research report, O '58, 17 ;
O '59, 13
Mechanical Sciences Division
, Special research report, O '58, 10 ;
O '59, 15
Minerals development
C, Clay isn't all, F '59, 18
McCarty, J. W.
How How teach textiles-a case study,
Jul '58, 8
McKun, W. J. -_, Growth continues, F' 59,10 \rightarrow, The GNAC Porcelain enameled steel plate, D '58,
16 Class size and the college composion Harrison, E. D. President's page, Ja '58, 3; through 0
${ }_{5} 59,3$

Harrison, W. B., III Neutrons, gamma '58, 14
Herren, Arthur Neutrons, gamma rays and you, Ja Herren, Arthur
_ . Ideas into fabrics, Jul '58, 12
Index to Research Engineer issues of
Industrial Development Branch,
∞

- Special research report, O '58, 19;
O '59, 22
Isotopes (see Nuclear)
J
Jackson, Thomas W.
Sound, fluid flow and heat transfer,
Ju '59, 4
Luntz, Jerome D.
, Atomic energy-promise for the future,

Articles in the 1958 and 1959 Issues
by Subject and Author

Computers,

, Binary spoken here, Ap '59, 9 A
Atchison, William F.
—, The expanding role of campus com-
puters, $\mathrm{F}^{\prime} 59,4$
Atomic energy (see Nuclear)
∞
Bellinger, Frederick
Community problems of new industry, Ap '58, 9 Boyd, James E.
$1957-58$, a year of contrast, special
research report, O '58, 5
The finest year: 1958-59, special reBuilding program in high gear, $\mathrm{F}^{\prime} 59,15$ Burrows, W. H.
ing, Ap '58, 4
M. R , Spill,

High temperature research D ${ }^{\prime} 58,6$
High temperature research, D '58, 6
The Ceramics Branch, D '58, 4
Clay mineral research, D ' 58,9
Fused silica for reactors, D '58, 12 High temperature electrical insulation, D '58, 14

Industrial uses of fused silica, D ' 58 ,
19
Porcelain enameled steel plate, D, '58
16
Chemical Sciences Division
Special research report, O '58, 12 ;
Class size and the college composition
course, Ap '58, 11
$, 58,9$

[^0]: decemker, 1959

