
Ne TECHNIQUE used to combat the ever-increasing complexities of modern technology has been specialization. But the specialization became an obvious danger. Thus another approach, that of up-grading the subject matter at all levels of education, has
 face of today's challenge in education, the speed and manner in which it is applied is of great importance.
Here at Georgia Tech, the acceleration of this up-grading

 required in the undergraduate curriculum.
But these changes concern not only the graduate school. They

 year in college are required for admission.
The impetus for such advancement comes partly from the realities of modern science, which are felt directly through the

 influence the undergraduates' appreciation for the "advanced" subjects.
But the impetus comes also from our departmental directors and their experienced staffs, who insist on preparing students for the technology of the future as well as for present-day science and engineering.
Perhaps there are practical limits to this method too, but

 than merely posing new difficulties, the growing complexities tend to expand the intellectual development of the individual.

Q.Q. Alarnion President

?oolord
u!̣sny for

> E
>

 need for structural modification of the existing facility. The second story floor is already in place underneath the topdressing of the roof and two future eledressing of the roof, and two future ele-
vator shafts are presently designated as storerooms. Office, service, and mechanical equipment rooms line the periphery

The use of radioisotopes as tracers will be restricted to low level or millicurie ranges. A vertical storage facility
will be used to store up to 25 curies of will be used to store up to 25 curies of
beta- or low energy gamma-emitting isotopes, and will allow easy access to an isotope to the exclusion of the radiations emanating from other isotopes. In addi-
tion, underground storage wells can ac-

 8
$\frac{0}{2}$
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
6 or cesium-137 for radiation chemistry
studies and research. In addition to the

 one-Mev Van de Graaff positive particle
accelerator; manually operated one-ton hoists in the neutron physics laboratory

 tion of continuous solvent extraction and continuous on exchange columns which
 room furnished with regulated voltage;
an aerobiology laboratory serviced with controlled temperature and humidity over wide ranges; an autoclave room; thirteen strategically-placed fume hoods
containing high efficiency filters; five portable glove boxes, also containing
high efficiency filters, for work with -!̣uzo!g pue staolosiolavy man Teering Laboratory, which will be ready for occupancy in March, will pro-
vide space and facilities for both research and education in certain physical, chem-
 of the nuclear sciences. The building of
this laboratory has been through the wisdom and talents of indi0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5 however, mention should be made of

 Dr. R. G. Wymer, former Georgia Tech

 by Dr. Bardwell in the design of the highly
successful principal research building
(the "450""

 -
boratory building can easily be
by the addition of 4,000 square 0
0
0
0
0
0
0
0
0
0
0
0
0
0
 entually a third floor, without the memory has the advantage of large sto,
age capacity in a small volume, but try
availability of the information at a give
instant depends on the position of the formation relative to the heads whid

 not compatible with the inherent spee
of the machine. The random-access mag netic core memory will eliminate thi problem for the 4,096 words that can In addition to this modification, work Electrical Engineering to add a punched card input and output to the UNIVAC At present the only input is punched.
paper tape and output is punched-paper tape and typewriter. The ability to use crease the capabilities of the machine to New Machine
The recent installation of the new
 ment. The 220 is a large scale, genera capacity of five thousand ten-decimal-digit
 age with a capacity of five million words
The 220 is typical of the more modem in the UNIVAC. Each plane has 4,096 tinin), cells; one cell stores one bit

N ORDER for a computational center to a constant program of improvement of its facilities is necessary. Such improve-
ment is necessary in two areas, that of acquiring new equipment for computation and data handling, and that of improving the equipment already in opera-
tion. In each of these areas the Rich Electronic Computer Center is quite UNIVAC Modifications

A major undertaking of the engineering
staff of the Computer Center is a program of modification of the UNIVAC SCIENTIFIC (ERA 1101) in order to technology and to increase the inputoutput capabilities of the machine while retaining its extremely fast operation. The Univac Scientific is a large machine in terms of memory capacity, and it is
extremely fast in arithmetic speed. The "odification consists of the addition of a "random-access" memory to the present
"rotating-drum" memory. The drum

Engineer Jim Collins holds one of 24 planes
of the magnetic core memory being installed

THE NEW LABORATORY IS ONE OF THE MOST MODERN FACILITIES IN THE WORLD OR RESEARCH AND INSTRUCTION IN RADIOISOTOPES AND BIOENGINEERING.

 the posssibility of an accidental discharge into the Atlanta sewage system of levels of radioactivity higher than those prescribed by the Atomic Energy Commission; a service chase allowing for easy maintenance of utilities; and an electron-
ics shop for the repair of electronic
In addition to normal laboratory equipment and those items already mentioned, the new laboratory will contain specialized types of radiation detection, counting, survey and monitoring instruments. X-ray machines will include one $50-\mathrm{KVP}$ unit and one $250-\mathrm{KV}$ unit as radiation sources, and one diffraction unit. A subcritical assembly will allow the study of
neutron diffusion, and a reactor simulator will permit the safe instruction of

Governor Marvin Griffin speaks at the dedication ceremonies on January 7. The labora-
tory is expected to be of great value to
education and industry in the Southeast. the new facility. This laboratory is pay-
ing dividends before it is completed. campus on May 11 and 12 of this yea Tech is negotiating with the same A magnitude concerning research on the development of new uses of radioisotopes for industry.
Contract work totaling over $\$ 200, \mathrm{ce}$ is already scheduled to be performed at tory is expected to be oreat value to坔
 program in its history ... This new construotion,

 Paul Weber, and the Georgia Tech Advanced Planning Committee.
E. D. Harrison, Technological President's Report, 1958 The Radioisotopes and Bioengineering Laboratory, de-

 January issues, 1956, '57, '58), is expected to be completed in late 1960.

 distinguishable activities at Tech, often employing the

 the best students, teachers and research personnel.
 six of the new buildings.

minerals development program,
to pilot-plant investigations
Until a thorough geologic-mineral en-
to we can only gineering study is made, we can only speculate about Georgia's future in minising metals known to exist in Georgia
 iron. Of the non-metals, there are pros-

 covered by a thorough survey. Such sur-

 even in this space age.
Witness the case of titanium. Until about 20 years ago, titanium had few uses and remained as one of the most
 - uespe asey of e!̣uet! p punoł Kilsnpu! Bu! tages over white lead and tin oxide. The aircraft industry demanded increasing quantities of this light and high-heat-
resistant metal until now the use of me-

 ore mines on the Atlantic Coast near
and on both sides of Georgia. Dr. H. W.

 reason to suspect that the deposits on both ends of Georgia's coastline continue through Camden, Glynn, McIntosh, Lib-
erty, Bryan, and Chatham counties."
Modern technology with new metnContinued on page 20

ت
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 lagging, others are missing out

 -чวeวi-nef e aney pinoo sque[d ôulsn-pera

 by definition are scarce, and
甹
B
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 20 come producers.

He rapidly changing technologies, so much in the news these days, are
affecting not only the traffic in space and the budgets in the Pentagon, but the very dirt under our feet as well. The new metals, a spring from nuclear and missile research and development are actually increasing the value of our nation's soil. Many mineral deposits considereworthe valuable sources of supply for the newest military and commercial products. Some of them are low-grade ores that have gained in value depletion of the more concentrated deposits. Others are minerals that have never before been in demand in quantity.

But what of Georgia? What is the
 Is the mineral wealth of the State increasing at a rate comparable to other states with similar resources? Unfortuother related questions are not available

 and economic growgia's greatest eco-
H Hence, one of Georgin

 of the State's mineral resources.
 the industry, of course, are especially concerned. A number of individual prospectors are always searching for a "pot materials is a complementary activity in minerals development. prepared for studies of cleavage structure.
 erals and geology of the State. The staff time and willingness to advise people re-
 Department policies do not permit work
 dual unless the information gained may be released immediately for the benefit

It is easy to see that the two organizaIt is easy to see that the two organiza-
tions complement one another and their work overlaps only in the interest of

-ue 'fno 8ip of poredord si qourig lyt Branch and report on these factors.
What Is Georgia Tech Doing? What Engineering Experiment Stafor last January established a Material sciences Division with assigned responibilities including a concentrated and
 he Station's Industrial Development
conomists, each having a broad backəपL 'sə!̧̣snpu! s[eıəu!̣u әपद u! punod

 teposits. Soon, space and equipment will

Through the Georgia Tech Research Institute, Tech is capable of doing min-

Enlarged 36,000 times by Tech's electro

ods of minerals preparation, more comdressing, permits the economical use of many deposits heretofore considered to

 year, the visible end of these deposits became disturbingly evident. After ex-
tensive minerals preparations research,
 the taconite deposits - ores containing only about 27% iron. Even more recent-
ly a process has been developed to reduce low grade iron ores to iron by a hydrogen reduction process in which the usual blast furnace step is eliminated. jo st!̣odəp umcuy ino urj isaro woll low-grade graphite be processed economically? Can we extract minerals from sea water? How about copper, gold, vanadi-
um, zirconium, manganese? Can we not
many types of data processing problems
and problems requiring an output in the form of a report. And, the decimal rep-

 those who only occasionally utilize comPlans for Future Growth The growth of Georgia Tech as an growth of industry in the southeastern area will require a continued improvement in computational facilities. The advent of the nuclear reactor at Tech and the resulting atomic research alone caliber.

In anticipation of these future requirements, plans are under way to construct a machine similar to the one now being
built at the University of Illinois. built at the University of Illinois. This
machine will be larger and faster than any commercially available faster than pose machine that has thus far been announced for the future. Toward this end
one member of the engineering staff of one member of the engineering staff of
the Computer Center is spending the present academic year at the University of Illinois working on their machine. His
 that the necessary improvements of the facilities can be carried out, and that
 needs of the institution and indusrty
20'S PHOTOELECTRIC PAPER-TAPE READER TAKES 2,000 DIGITS A SECOND.
continued from page 10
 nd execute, together with input ut facilities for punched cards, paper 1 memory capacity of the machine can

 age of numbers.

The speed, flexibility and storage ca-
bilities of the 220 will increase the her and types of problems that can
handled at the Computer Center. юineering analysis, require a great mber of arithmetical operations with a

 problems, such as forecasting, statistical nalysis and trend analysis, require large
mounts of storage as well as flexible

$\frac{4 x}{2 \pi}$

HכyキヨSヨy SวITกキyaxh
 FOR IRAN

71． 2.8 ec

UBIold KDOIOLOK

1

－In the middle of January Georgia Tech was host for tit first time at a meeting of the Inter－Service Committee Technical Facilities，Southeastern，USA．This is a operative association，primarily of military research orga
 and electronics laboratories，etc．The committee encourag the sharing of such facilities and the exchange of technia information of mutual interest．

 tronic Computer Center，the Analog Computer Labor
 Engineering Experiment Station is honored to serve as
 the Tennessee Valley Authority．
 tion playing games with electronic computers，much carrying on such an engagement by proxy．But it has
 not only played tic－tac－toe with Tech＇s IBM 650 fromi mountain hideaway，but he won．It seems that someo the University of Florida wrote a 650 program for game and challenged anyone to beat it．Last summe Hefner accepted the challenge，made one move， the machine＇s rapid return move，then retired to the of his cabin porch at Lake Rlue Ridge，Georgia，ards Computer Center operators who refereed the contest dean was pronounced winner and still champion

