

ciety. On the other hand, basic research
(also called fundamental research or (also called fundamental research or
pure research) has as its principal ob-

 exclude from consideration the aspect of

 sị

 of use to anyone.
$\mathbf{W}_{\text {ata }}$ factors other than the aspect of utility can guide the choice of basic research problems? Are they to be chosen by pure caprice? This is an important problem. E. Bright Wilson² has noted:

 their wisdom in choosing them." There
is a common fallacy that if you are dealis a common falatacy that in you are dealvalues rarely, if ever, enters in. Facts speak for themselves in science, we are often told. But in the selection of a re-
search problem, there freauently arises search problem, there frequently arises
the question of what facts are most the question of what facts are most
worthy of being collected. The number of possible facts must be practically infinite. That a choice must be made is in-
 ers one fact, millions upon millions of facts occur in a cubic millimeter of his
body. To put all the facts of nature into
\qquad

客

 was the other way around. Invention

 thing like a reasonable explanation of
combustion or of the rudiments of met-

 8
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0 and drugs to the world. By the twen-
tieth century, science had developed so lieth century, science had developed so
rapidly that in many of the areas of the

 The striking social phenomenon of our

Georgia Tech's 1956 Sigma Xi lecture

necessary as he had looked into the matter and found the War Department already had a chemist. Now this attitude should not be thought to apply to chemists only.
nant further states: "In World W President Wilson appointed a consultic board to assist the Navy. Thomas Edison was the chairman; his appointment
widely acclaimed by the press-the widely acclaimed by the press-the
brains would now be available for application of science to naval proble The solitary physicist on the board his appointment to the fact that Ed
in choosing his fellow board mem had said to the President, 'We might

 Associate Professor of Chemistry Georgia Institute of Technology
T here has been a remarkable change
1 in attitude of the American public toward science and scientists in the twentieth century. This subject has recently been surveyed by James B. Conant ${ }^{1}$.
Some illustrative stories might be of in-
 World War I, "a representative of the American Chemical Society called on
the Secretary of War, Newton Baker, and the Secretary of War, Newton Baker, and
offered the service of the chemists in the conflict. He was thanked and asked to come back the next day. On so doing, to come back the next day. On so doing,
he was told by the Secretary of War that while he appreciated the offer of
the chemists, he found that it was un-
 шo shap maц especially in a field which has already
 any additional results are likely to be The
quently those which have ramifications in several areas. Problems which are a "dead end" are generally unimportant. new fields of investigation should be
 times?" If it is too far ahead of the

 a background for understanding the

 ticular is the field censored for military

 scientists in peacetime do not wish to

search problems, the problem should
lead to the collection of basic facts and
 to their correlation Conant ${ }^{7}$ has said "The ceptual of science demonstrates beyond a

 its success or failure in stimulating fur-
experimentation or observation ther experimentation or

After a theory is well established, after

 ated, not only because they are the most
striking, but because their study will be the most instructive. New concepts may
 inherent in an old theory.

The investigation of a really new area

 new instruments in their day such as the

 R

-1u00-IX eus!

science would be to put the whole into the part. As the great French mathemaician Poincare ${ }^{\text {e }}$ has said, "scientists believe there is a hierarchy of facts and that made." The most interesting facts are those which can serve many times; these are the facts which have a chance of coming up again. We are fortunate to
have been born in a world where there are such. A familiar example to the chemist is the approximately one hundred elements which make up the com-
position of all known substances. In what chaos the chemist would find himself if there were instead one hundred million elements! Biologists would be individuals and no species and if heredity did not make sons like their fathers. The facts which are most often recurring are to us simple precisely because we are
C. A. Coulson ${ }^{4}$, the mathematical chemist, has pointed out that " . . though facts are the raw material of science they do not constitute its glory." Lord those scientists who were content to gather facts as "stamp collectors." Sure-
ly the unordered collecting of facts is of no more value than the collecting
about problems he does not feel impelled
to attack cannot in his opinion be very to attack cannot in his opinion be very
significant. Surely the scientists is even less significant. Finally, indeed, many of the most valuable basic
 because they have not been discovered.
It is, therefore, especially hard to get funds to support the uncommitted inves-
 Michael Faraday, Louis Pasteur, Antoine Henri Becquerel.
In supporting basic research, the em8upinoddns uodn parerd әq pinoчs siseud the right man rather than the right project. The investigator should be en-
couraged to work upon any problem couraged to work upon any problem
which seriously interests him. The principle involved here has been formulated by the mathematician H. B. Phillips ${ }^{18}$, "When the proper course is
 9.8
0
0
0
0
0
0
0

 tion with Soviet Russia.
 3, POINCARE, HENRI, The Value of
Science, The Science Press, N.Y., 1907, p. 4.
 Belief, Univ. of North Carolina Press, Chapel
Hill, 1955, p. 41.
5 WHITEHEAD, ALFRED NORTH, Science
and the Modern World, MacMillan Co., New
York, 1925, p. 4 .
6 WILSON, E. BRIGHT, op. cit., p. 2 .

 9 CONANT, JAMES B. Modern Science and Modern Man, op. cit, p. 16.
10 WISON, E. BRIGHT, op. cit, p. 1 .
11 WISON, ERIGHT, op. ict, P. 2.
12 HILDEBRAND, JOEL, Saturday Re-
 P. 13 PHILLIPS, H. B., Technology Review,
April, 1956, p. 322 .
earch program.
As a final factor in the choice of basic research problems in science, we will teenth and Eighteenth Centuries most scientific research was conducted by "amateurs," that is to say by men who oै
0
0
0
0
0

 a brain." Others such as Benjamin
Franklin and Antonie L.
Lavoisier

 his activities as tax collector under the royal regime). In the Nineteenth and
Twentieth Centuries, basic research in Twentieth Centuries, basic research in
science has been cultivated primarily in universities and to some extent in research institutes (e.g., the Kaiser Wil-
helm Institute in Berlin). There is no indication that the cost of scientific experiments has in any way lessened since Boyle's day (the latter half of the 17 th
Century). Clearly a pertinent question facing most investigators is whether or
 tainable financial limits.
Frequently, the solutio

Frequently, the solution to this diffi-
culty is to try to

 applied research and basic research be-
comes most evident. Nearly always it is comes most evident. Nearly always it is
easier to get support for research leading to a useful new material, commodity, tool, weapon, or gadget than to sup-
port, research which aims merely at understanding nature. This is especially true since only some rather vague gen-
eral principles, such as we have

 scientist as and who merely. rules of logic and experiment.
has said: "There is no logic
 here were a number of prob choose from. Wilson ${ }^{11}$ has said: eseare at all times more problem would like to solve than he has thly means to investigate probably the wrong business." It is true, in spite of all the foreg portant research problems are not ch
 chance. It is noteworthy that such
tific discoveries are made only by qualified observers who painstakingly said, "Chance only favors prep minds. As example of saration first coal-tar dye by William Hen kin (who was looking for a synth by Antonie Becquerel, the disco penicillin by Alexander Fleming. these scientists were carrying ou tal research when they made the eries for which they are now These illustrious discoveries were It is the essence of the unknowi nobody knows what is to be much less where to look for new fields of inquiry such as the the future growth and developm that by and most fundamental discoveries have by "uncommitted" investigators, to say, investigators who were follow any clue, interesting obser
or idea, regardless of what directio

 science are fundamentally antithetic propositions." The development of scientific discussion of their consequences. While secrecy obviously limits discussion, it is doubtful that secrecy can keep scientific information from an intelligent possible
enemy as was brought out by the recent Geneva Atoms for Peace Conference.

Possibly the most important factor in the choice of a research problem is
 said: "Scientific research, not being a routine process by requiring originality

 әq 'ләлоәюош 'ppnoчs шәтолd чวлеәs

 greatness to their skill in choosing research problems, the significance of a re-
search problem often depends on the peculiar quality of the imagination and creative ability which the investigator brings to its prosecution. The great sci-
entist must be regarded as a creative

Head, Technical Information Services

The Spencer Chemical Company's forty-five million pound a year polyethylene plant in
Orange, Texas. Building of this plant was Orange, Texas. Building of this plant was a research in possible uses of a gas containing
a high percentage of ethane polyethylene.
 How can the user best be reached? 9 What are the good and the bad features of the proposed product? 10. What inshould the sales quotas be? 12. How much should be spent on advertising? SALES

There are several more-or-less independent ways in which market research assists a company's sales program.
 ing of expected sales. Forecasts are based on the overall trends of sales for the company's products as shown by past history. In some cases, the trends must
 ing of the way in which the product will
be used and from an estimation of the demands for the new product. Suitable allowances are made for technological and economic changes which can be anticipated and for known changes which will occur in the competition. In addition to the modified trends, many market research groups attempt to predict cycle pany's product. Such cyclic changes are

 important that management's decisions
be sound ones: decisions not influenced
 research, the study and evaluation of

Market research can profitably be used

 search can help industry:

Union Carbide and Carbon. Hence,
ppencer turned their activities to the proSpencer turned their activities to the pro-
duction of ethylene glycol. However, in 1952, an antitrust ruling required Imperial to license their patents to other American companies. Because of the
preliminary survey, Spencer was able to open negotiations immediately with Imperial. It was the first of five U. S. companies to obtain a license. Because of the anticipated competition from the
other four newly-licensed companies, other four newly-licensed companies,
Spencer purchased a technical and marрәэпролd иәәq 7 sn ! реч чэ!чм Крms дәу

 research group. Their team spent four
months in research and made nearly 900
 which covered the product, the process
 ties to its uses, the names of process
equipment manufacturers, methods of research and development, and market estimates. The survey gave Spencer Chemical Company the answer to questions about the most effective sales pro-

 a $\$ 14$ million plant in Orange, Texas, with an annual capacity of 45 million
pounds of polyethylene. The first com-

 disregarding a highly profitable undertaking, but to accept them without a de-

 potential of some customer's market in order to predict the stability and magnitude of future sales. Research

Every applied research project should
be preceded by a market research evalu-
ation. Often, only a superficial study
Continued on next page the example isn't even necessary to see
 -ч尺̊! ly competitive industry, the sales depart-
 tion will most likely be the one to get the most business.

Production

 plies facts indicating seasonal variations uling production and controlling inventory. This type of assistance can be exemplified by supposing that a com-它 every possible means of obtaining additional orders. However, if market re-

 profitable.

Product Development

Perhaps the greatest pay-off of market research in industry is in product
development. The evaluation of a new development. The evaluation of a new
product's potential is one of the most

 by the Spencer Chemical Company of
 appraisal of possible uses of a gas containing a high percentage of ethane. product was polyethylene. However, the
 production of polyethylene and had
At times, when a co when bution is being undertaken in a ous possible distribution systems bution system also involves a stud The evaluation of sales effective

 are familiar with the company's uct. Survery detailed as illustrated by the lowing example:
As part of a development progas
 for the purchase of automist who machines. The psychologist called in to do this speciah jave of guilt regarding the many ing devices they have. Usually chase of an automatic washer is ly proud of their role as housewive conscious of their duties, and and budget-minded home-makers, that automatic washers are an ex gance. They just as well. Consequ many women who could arh all ther labor and time-saving device just a little afraid my husband reause got it too easy housewives feeling of ex gance in purchasing automatic some "able. Apparently either a
desirable.
level control for partial loads or saver serves this psychological nee

One of the ethylene purification towers at
Spencer's Orange, Texas, polyethylene plant. influenced by the season of the year, cyclical variation in the overall eco-
nomic status of the country, and many other factors.
These forecasts are used for establishing realistic sales goals which are an integral prams. They are also used to evaluate the effectiveness of the sales program. For many industries, sumpraisal of any company's sales in various geographical areas with the total sales of similar prod
 from Government or trade-association sources) or from sales forecasts, it is pos-
 value to the product. However, if supertical either to expand the market re search to get more exact information or to initiate the research project. It should be emphasized that there is a timeliness to market research reports
as they affect both research and product development. It is quite possible for company to be forced to abandon an expensive program with a promising product because the research and derapidly enough. A favorable market research report today may be completely reversed in one or two years, or less. Management Decision

As mentioned earlier, the data from market research reports are necessary for effective long-range planning. The long-range planning involves the forecast forecast of conditions for the specific product of the company. After the fore-

 to maintain a continuous review of all
 The market research ons change. indication of the effectiveness of the advertising program, the fraction of the
 pany, the estimated sales which are to be which gives management a criteria for distribution of the available funds among the various departments.

The scheduling of plant expansion and
product modification can also be based to a major extent upon market research data. For example, when manufacturers of flourescent tubes shifted from berylings, to other phosphors, Mallinckrodt Chemical Works was in a position, with60 days, to prepare samples and build
several-hundred-thousand-dollar-plant o supply the new chemicals. The com-

Figure 1-Comparison between analog and digital solution of non-linear equation assistants, all of whom are pursuing their quired 28 amplifiers, 2 multipliers, 2
graduate programs on a part-time basis. function generators, and an assortment
minor elements.
Unlike digital machines, analog computers cannot be used for payroll, inperto putation, but are best suited for physical
problems in which the quantities are continuous in nature. However, for this type of problem, they may be ten or even a hundred times as fast as large digital computers.

Operations and Computing Components
An analog system is sometimes called a simulator, sometimes called a differen-
tial analyzer, and sometimes an analog tial analyzer, and sometimes an analog
computer. It is all of these, since modcomputer. It is all of these, since mod
ern general-purpose analog equipment is readily employed for physical simulation (in "real time") in which parts of a mis-
sile system may actually be wired into
 analyzer to solve differential equations. applications-it may also be employed as a more general computer for solving linear algebraic equations, double integrals, geometric problems,

The simplest analog operations
those of multiplying by a constant,
ding and integrating. These basic Three of these men graduated from Georgia Tech and joined the Station staff this year.

Digital and Analog Computers digital and analog machines for engineering computation, we see that digital computers are employed for two principal reasons: first, accuracy is attainable to sired; and second, they are adaptable to almost all types of numerical problems, including those of an accounting and

On the other hand, analog computers are somewhat restricted in accuracy. Although the accuracy of each component is 0.1 percent, errors of about one percent will accumulate in solutions of modputing elements). However, this precision is usually adequate, as demonstrated by the comparison between digital and analog results shown in Figure 1.
In this figure, a solution of the type shown in Figure 2 was plotted and compared with the precise point-by-point soution eomputed by the Rich Electronic Computer Center on the ERA 1101.
nal award as the best constituent club paper at
the 1935 annual convention
of Paint and Varnish Production Clubs Cleration of Paint and Varnish Production Clubs．
The exterior－house－paint exposure studies de－
scribed in this paper represent a second series of

 The Station，as well as southern paint manufac－ turers，has been interested in the painting of
southern yellow pine because this wood is one

 The present work is intended to encompass the
original findings with respect to primers into a original findings with respect to porimers into at
comparative evaluation of t oumber of well－
known primer and top－coat formulations togeth－ known primer and top－coat formulations togeth－
er with selected variations ＋

Belser，Richard B．，and James W．Johnson，＂A Versatile High－temperature Infrared Oven．＂，Re－
printed from Ceramic Age，December 1955. An economical，highth－temperature，infrared
oven was ocstructed from a one－liter beaker，
lined with
 20－watt，infrared bulb．By operation of the
oven，with the beaker inverted over the lamp，

 chamber．The heating efficiency is greater within

 These and other technical publications may be obtained，and the complete би！！！мм 人q＇patsonbas ts！！suo！！e’！！qnd
 periment Station，Georgia Institute of

Technology，Atlanta 13，Georgia．

 \qquad

边

 an engineer with a good background in
the mathematics of his field can quickly become conversant with its use．For these reasons，analog computers are used extensively to study engineering prob－
lems such as aircraft and mechanical vi－ bration，aircraft flight simulation，tra－ jectory studies，aerodynamic，fluid flow and heat flow problems，servo－mechan－
ism design，and chemical process con－

 newly
房 Since the La Since
tablished
 tronic function generators，four tional electronic multipliers，and special test equipment．When
 3边
 ice for the Station projects，for the acad－
 undertake a program of applications re－ search，in which we study new and bet－
ter ways to apply our computer to prac－ ter ways to apply our computer to prad
tical problems．（The Laboratory already
 this objective．）．Finally，a program of
equipment design and development is required so that we might improve the existing equipment and develop new c ponents．In this way we may give pression to the creative ability of
young engineers who will staff the L ratory．Through this parallel three－part be program the maximum benefit Station and its staff members．
differential equations with constant co－ efficients，the type so commonly en
countered in electrical and mechanical engineering．Simultaneous linear differ－ ential equations can also be solved with these operations．
For greater versatility，multipliers，
unction generators，and sine－cosine re－ solvers are required to permit the solu－ tion of nonlinear equations．These com－ ponents，although considerably more ex－
pensive than linear amplifiers and inte－ grators，greatly extend the usefulness

 as scheduling time permits．Also，three servo－resolvers of advanced design are scheduled for delivery in September as
part of the original equipment order．In addition，two more multipliers，two func－ tion generators and three servo resolver－
 manufacturer．This computer is supple－ mented by a $10^{\prime \prime} \times 15^{\prime \prime}$ X－Y plotting
board which produces curves similar to those shown in Figure 2．The necessary control cabinets，power supplies，air con－ ditioning equipment，and a line voltage regulator complete the Laboratory．
Applications of Analog Computers

The example shown on page 17，in－ gineering a accuracies are adequate，is typical of the problems especially suit－ able for solution on an analog computer． It illustrates the usefulness of plotted solutions，and demonstrates the simplicity
with which changes of the system design can be investigated．This capability is one of the prime advantages of the ana－ log computer because it provides the

 plotted or observed on a meter，thus pro－

